Ensemble Seasonal Forecasting Initialized from Multiple Ocean Initialization with CFSv2

Jieshun Zhu¹, Bohua Huang^{1,2}, Lary Marx¹, James L. Kinter III^{1,2} Magdalena A Balmaseda³, Rong-Hua Zhang⁴, and Zeng-Zhen Hu⁵

¹Center for Ocean-Land-Atmosphere Studies (COLA)

²Department of Atmospheric, Oceanic, and Earth Sciences
George Mason University (GMU)

³ European Centre for Medium-Range Weather Forecasts (ECMWF)

⁴ Earth System Science Interdisciplinary Center/

University of Maryland, College Park (ESSIC/UMD)

⁵Climate Prediction Center/

National Centers for Environmental Prediction/NOAA (CPC/NCEP/NOAA)

Acknowledgment: Prof. J. Shukla (COLA/GMU)

Multiple Ocean Analyses

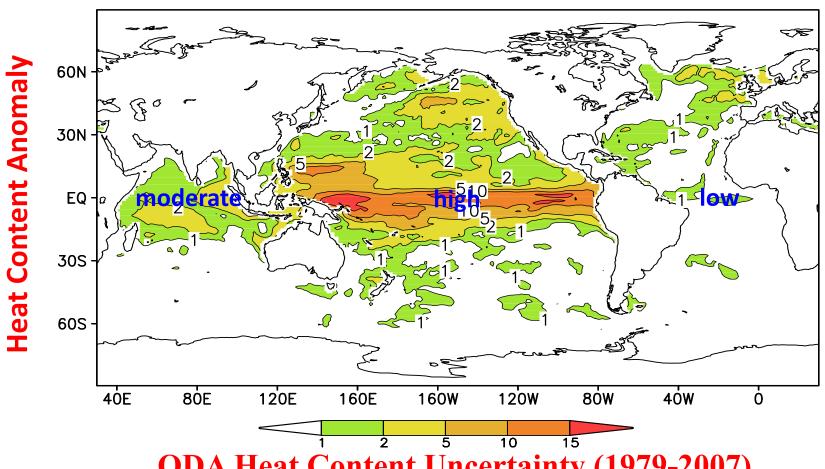
- ORA-S3, ECMWF (Balmaseda et al. 2008)
- COMBINE-NV, ECMWF (Balmaseda et al. 2010)
- ORA-S4, ECMWF (Balmaseda, personal communication)
- GODAS, NCEP (Behringer 2005)
- CFSR, NCEP (Saha et al. 2010)
- SODA2.1.6, UM/TAMU (Carton and Giese 2008)
- ECDA, GFDL (Zhang et al. 2007)
- •

Different model systems
Different assimilation schemes
Slightly different observational inputs

Why Multiple Ocean Initialization?

Heat content anomaly (HCA) from ODA analyses shows high uncertainty

Example:


Tropical Atlantic

1st EOF modes from different analyses give different patterns

Projection spread is large among analyses

Var(Ensemble Mean) Signal/Noise Ratio = Var(Intra_Ensemble Deviation)

ODA Heat Content Uncertainty (1979-2007)

DATA SOURCE

ECMWF: ORA-S3, COMBINE-NV

NCEP: GODAS, CFSR

UM/TAMU: **SODA**

GFDL: **ECDA**

Heat Content Anomaly

Ensemble average reduces noise effectively

Leading EOF patterns become physically meaningful

S/N ratio improves significantly

Signal exists in all analyses (masked by high internal noise)

Zhu et al. (*Clim. Dyn.*, in press)

Uncertainty is relatively low in Tropical Pacific

Scientific Questions

• What are the effects of uncertainty in upper ocean heat content on seasonal-to-interannual (SI) prediction?

 Will ensemble predictions initialized with multiple ocean analyses improve SI predictive skill?

Experiment Design

12-month hindcasts initialized in April

- Forecast Model: NCEP CFS version 2
- 1) Atmosphere (GFS) T126, L64
- 2) Ocean (MOM4) 0.5°x0.5° (0.25° lat, 10°S-10°N), L40
- Multi-Ocean Initialization Experiments (1979-2007)
- 1) Ocean initial state (OIC): Monthly means from COMBINE-NV, ORA-S3, CFSR, GODAS
- 2) Anomaly initialization in OIC
- 3) Perturbed Atmosphere-land IC (4-member with each OIC, Apr. 1-4, CFSR)
- Additional Hindcast Experiments
- 1) AVEoci --- Average OIC of COMBINE-NV, ORA-S3, CFSR, GODAS
- 2) ORA-S4 ---instantaneous OICs from **ORA-S4** (1982-2009) with full Initialization
- 3) CFS Reanalysis and Reforecast (CFSRR, Provided by NCEP, 9-month, 24-member, 1982-2009)

Prediction skill of the Nino3.4 is sensitive to OICs

(April ICs: 1979-2007)

- Predictive skills of individual OICs have substantial differences
- ES_Mean is comparable to the best of individual predictions
- Perturbing OICs gives a better ensemble spread than perturbing AICs only

CFSR initial states seem slightly different from others

Comparison of Initilization: Correlation of HCA among ODAs

Ensemble Mean OIC vs Ensemble Ocean Prediction

AVEoci Features

- 1) Ensemble mean OIC from COMBINE-NV ORA-S3 CFSR GODAS
- 2) Anomaly Initialization
- 3) 4 ensemble members

Ensemble ocean prediction is superior to ensemble mean OIC

NINO3.4 Prediction Skill

Q1: Does anomaly initialization help? Maybe

Q2: Does monthly OIC lower skill?

CFSRR (NCEP) vs. CFSR (COLA)

Differences in Initialization

- 1) Full vs. Anomaly
- 2) Instantaneous vs. Monthly
- 3) Ensemble sizes: 24 vs. 4

ORA-S4 vs. **COMBINE-NV**

Differences in Initialization

- 1) Full vs. Anomaly
- 2) Instantaneous vs. Monthly
- 3) ORA-S4 is more updated

NINO3.4 Prediction Skill

Prediction Skill of JJA Mean Precipitation LD=2-4 Mons (Prediction vs. CMAP; Apr ICs:1982-2007)

Model shows some skill in the northwestern US

Time Series of JJA Mean Precipitation

NW US (125W-110W, 37.5N-46N)

MM/DAY

Correlation between NWUS JJA Precip. and JJA Global SST (125W-110W, 37.5N-46N)

(b) NCEP(CFSRR)(24M)

(c) OCN_ESMEAN(24M)

Correlation with SSTA in JJA

- 1) The enhanced precipitation is associated with ENSO and PDO
- 2) OCN_ESMEAN overestimates the correlations with Indian and Atlantic Oceans; CFSRR seems much better.

Summary

- There is considerable uncertainty in upper ocean heat content anomalies from different analyses
- OIC uncertainty causes a noticeable spread in ENSO prediction
- Multiple ocean initialization provides more reliable SST prediction in tropical Pacific Ocean
- There is no substantial difference between full and anomaly initialization
- Predictability of northwestern US precipitation is mainly due to the ENSO-PDO effect